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S = HSHT (18) L
From Egs. (6) and (7) we see that
H=(ViVi™) (19) e

where I is an identity matrix of mth order. Inserting this in
Eq. (18) and recalling Eq. (4) gives, finally, the simple formula

S = VGVt (20)

for the unsupported stiffness matrix of the structural element.
The matrix G can be conveniently evaluated by numerical
integration using a formula of the type

G = 2vUTNU; (21)
(2

where the ~; are constants and U; = the value of U at some point
7.
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On Minor-Circle Turns

R. D. Shaver*
The RAND Corporation, Santa Monica, Calif.
October 1, 1962

WITH THE ADVENT of the space age, many people have be-
come concerned with the maneuvering characteristics of
space vehicles. A great deal of literature is available on the
various aspects of orbital transfers and on the various methods of
providing improved performance. In a recent paper W. H. T.
Loh! introduced a definition of a minor-circle turn. We would
like to suggest at this time an alternative definition which appears
useful in that it removes some of the restrictions found in the
work by Loh.

Loh’s definition of a minor-circle turn requires the vehicle to
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fly in a plane which is oriented normal to the axis of the earth and
which is elevated above the equator at that distance where the
plane intersects the surface of the earth at the desired latitude.
While this is satisfactory for near-earth trajectories and for
gentle minor-circle turns, it does not appear to be capable of
handling the cases where the altitudes are large and where the
latitudes of the turn approach ninety degrees. To surmount this
difficulty, let us define a minor-circle trajectory as that path where
the vector pointing toward the center of the earth from the
vehicle always cuts the surface of the earth at a constant latitude.
This is equivalent to requiring the path of the vehicle to lie on the
surface of a cone whose solid angle is the supplement of twice the
latitude (see Fig. 1). With this definition, we are no longer
restricted to near-earth trajectories or to gentle turns but may
include sharp turns with steep re-entry angles without violating
our assumptions. The equations of motion may be written by
inspection if we choose our three directions as normal to the
surface of the cone, tangent to the velocity vector lying in the
cone, and perpendicular to these two directions. Defining v as
our ascent angle, « as our bank angle measured out of the cone,
and N as our latitude, we obtain

(1/2)m(dv?/ds) = m{dv/dt) = —D — mg sin v
my¥dy/ds) = L cos a — mg cos v -+ (mv2/r) cos v
(mv?/7) cos? vy tan A = L sin «

where s is the distance along the path.

These three equations may be compared to those of Loh and
found to be similar but not identical. For near-earth orbits of
slowly varying altitudes, the equivalence is clear as is expected
from the geometrical considerations of the two definitions. It is
also clear that this new definition adds no new restrictions and
thus the results obtained by Loh in his paper may be reproduced
if desired. To demonstrate this, his Eq. (2) becomes, with our
definition and notation,

& (/D) \/ cos? v p cos v tan -+

7/2 7}‘)' d"/ 2 B
1—-— 4+ — — = —2gsin vy
gr gcos vy \ds

and the aerodynamic control required at any moment along the minor circle becomes

(v2/gr) cos 4 tan X

sin a = —cosytanA| + |1 - — + -
gr gr g cos v \ds

which is similar to Eq. (3) in Loh’s paper.
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Design of Tufts for Flow Visualization

Ascher H. Shapiro

Ford Professor of Engineering, Massachusetts Institute of Technology,
Cambridge, Mass.

September 28, 1962

UFTS are frequently used for visualizing gas or liquid motions
near solid surfaces. They are especially useful in develop-
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mental research for discovering regions of backflow, boundary-
layer separation, and strong cross-flow, with the aim of correcting
these conditions.

Commonly the tuft is a strand of wool, fixed at one end to the
solid surface. Mechanically it is a cantilever beam with one end
free and the other end fixed, and it assumes a position as in Fig. 1,
exhibiting the flow direction at some distance from the surface.
For the tuft to lie very close to the surface, as one would normally
prefer, the bending stiffness must be exceedingly small. But this
usually requires a fiber so fine that it is hard to see. Thus the
requirements of flexibility and of ease of viewing are in conflict.

The ideal tuft would consist of two parts: a perfectly flexible
universal hinge, and a rod-like direction indicator large enough to
be easily visible and of a material neutrally buoyant in the fluid.
Fig. 2 shows an approximation to this. The hinge is basically
two or three links of a chain, made of very fine wire or nylon
thread. The rod, for air, could be a wool tuft of suitable thick-
ness; for water, it could be a dowel of wood or plastic having a
specific gravity close to that of water.

In practice, flow-indicating tufts of this design have been very
successful. The tufts move about freely and lie very close to the
surface.
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Thermal Stresses in an Elastic Half-Space With
a Moving Boundary

I. G. Tadjbakhsh
Research Staff Member

International Business Machines Corporation, Thomas J. Watson
Research Center, Yorktown Heights, N.Y.

July 20, 1962

HE THERMAL STRESSES in an elastic semi-infinite solid whose
boundary moves as a result of melting or freezing are con-
sidered in this note. The analysis is based on the uncoupled
theory of thermal stresses. Such effects as viscosity and the
variation of material properties with the temperature are also
neglected. There is, of course, a question as to whether the
elastic equations apply in phase transition conditions; the objec-
tive here is the investigation of the effect of inertia and comparing
the result with quasi-static theory. Generally speaking, the
neglect of inertia for problems not tnvolving a moving boundary has
been shown to be justified in Ref. 1, where a complete account of
the various investigations is given. It will be shown that inertia
plays an important role in moving boundary problems, and that
its effect should be considered in certain cases.
Let us consider a solid occupying the region x > 0, initially un-
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stressed and at a uniform temperature which shall be referred to
as zero. The solid is to be melted by the application of heat at
the plane ¥ = 0. We assume that the solution of the tempera-
ture T(x,t) and the free boundary position s(¢) is known. The
thermal stresses ¢, o4, and o in directions x, y, and z are given
in terms of the x-component of strain e(x, ¢) by the equations

oz = plcte — «T) }

oy = 0 = (1 — ») Y vo, — EaT) (1)

where E, v, p, and a are Young's modulus, Poisson’s ratio, den-
sity, and coefficient of thermal expansion, respectively, x =
Ea(l — 2»)71p71, and ¢ is the velocity of dilational waves. The
strain e(x, £) is the solution to the following boundary-value
problem

CPpy — €1 = kTzz INMR: s(B)<x < ©,t>0 (2)

e(s(t), 8) = xc2T,, (3)
e(w,8) =0 (4)
e(x, 0) = efx,0) = 0 (5)

Here T, is the melting temperature and condition (3) states that
at the boundary x = s(¢) the stress should be zero.

To obtain the solution, we examine the state of affairs in the x-¢
plane. In those cases when s(¢) ~ #/2 the region of interest R of
the x-£ plane is bounded by the curve x = s(¢).and the line ¢ = 0.
This region is divided into two subregions Ry and R,. The region
R; is the locus of all points whose domain of dependence fall
entirely within & and do not intersect the moving boundary.
Region R;is simply R — R;. The two regions are separated by a
semi-infinite characteristic which is tangent to the curve x = s(i)
at the point (%, ) and extends from this point in the direction of
increasing x and £.

Thus, in region R; the solution e is equal to the function eyx, t)
which satisfies Eq. (2) and initial conditions (5) and is regular as
]x, — o, This solution may be obtained either by transform
technique or from the formula

P t x4+c(l—7)
€ = f f T:r::c(gy 7) a¢ dr (6)
2¢ 1] x—c(it—17)

In region R; the initial conditions no longer matter, and the solu-
tion may be chosen as

e = efx, 1) + flet — x) (7

Application of the boundary condition (3) results in the functional
relationship

fE) = ke 2T — el s({E))HE))
where £ = ¢t — s(¢) (8)

This equation determines f for any argument £ once ¢ has been
solved in terms of ¢ from the second equation in (8). Thus, the
solution is completely determined in terms of eyx, ¢) and the
stresses may be found from Eq. (1). We note that the stress is
discontinuous across the characteristic that separates the two
regions by the constant amount As, = pc%( —x,), where x, is the
intersection of this characteristic with the x axis.

We also note that for times corresponding to the portion 0 <
t < I of the boundary the stress-free condition cannot be met and
the initial conditions predetermine the boundary stress. Thisisa
consequence of the initially infinite speed of the boundary, and the
conjecture is made that if the effect of thermoelastic coupling is
included, the speed of the boundary will be less than the sound
speed of the medium. This difficulty does not arise in freezing
problems, in which case the boundary moves opposite to the
direction of wave propagation.

‘We shall now apply the solution obtained above to the case of a
semi-infinite solid which is being melted by keeping the plane
x = 0 at comstant temperature Ti, (77 > T). This is the
Neumann problem and its solution is?

T = T erfc (x/2V ki) Jerfc b, s = 2h(ki)V? (9)



