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Evaporation and Combustion of a Single-Component Fuel in a
Chamber of a Liquid Rocket Engine, LRE

S. M. I’ YASHENKO

Nomenclature
a = coefficient in the formula ¢4
A = rate of evaporation parameter, m?®?/sec
b = coefficient in the Nusselt criterion formula
B = ¢,AT/I
¢, = heat capacity of vapors, kecal/kg-deg
Cq = coefficient of the aerodynamic resistance of the drops
dx = flowing diameter of the drops, m
d, = average initial Sauter mean diameter, m
= 12££1n(1+B)
aco gn
7 = dynamic viscosity of gases, kg-see/m2
! = aerodynamic force, kg
g = 9.81 m/sec?—acceleration force due to gravity
G = rate of fuel injection, kg /sec.
G, = weight amount of vapors, formed per sec, kg/sec
yr = density of theliquid fuel, kg/m
v0 = density of delayed-reaction combustion products, kg/m
7 = acceleration of gases, m/sec
jx = acceleration of drops
l = heat of evaporation of the fuel, kcal/kg
mg = mass of flowing drops, kg
Nu = Nusselt number
po = pressure of gases in the chamber, kg/m?
q = mass flux of substances evaporating from the drop’s
surface, kg/sec-m?
r = the flowing drop’s radius, m
Re = Reynolds number
S = cross section of the chamber of LRE, m?
Sx = thedrop’s cross-sectional area, m?
t = time, sec
T, = temperature of delayed-reaction gases, °K
Tyou1 = fuel’s boiling temperature, °K
AT = Ty — Thois
U = velocity of drops relative to that of gases, m/sec
v = drop velocity relative to the chamber’s walls
w = velocity of the gases relative to the chamber
z = path traversed by the drops, m
z = path traversed by gases
z = relative amount evaporated

HE THEORY regarding operating conditions in a com-

bustion chamber of an LRE has until now been exposed
insufficiently in the literature. In 1958, an article by
Sodha (1)! was published, in which final solutions are pre-
sented in the form of Bessel and Neuman functions, but the
initial conditions contain relationships that are far from the
truth. It is assumed, for instance, that the rate of radius
decrease of an evaporating drop is constant, whereas the
index of spraying uniformity is equal to unity. It seems to
us that the evaporation theory of drops in a gas stream,
developed by Frank-Kamenetskyi (2) and supplemented
by certain plausible assumptions, enables one to calculate the
main parameters and chamber dimensions of an LRE with
an accuracy sufficient for engineering purposes, presenting
the final results in the form of customary algebraic equations.

Translated from Izvestiia Vysshikh Uchebnykh Zavedenii
Aviatsionnaia Tekhnika (Bulletin of the Institutions of Higher
Learning, Aviation Technology), no. 4, 72-82 (1960). Translated
by U. S. Technieal Documents Liason Office, Wright-Patterson
Air Force Base, Ohio.

! Numbers in parentheses indicate References at end of

paper.

In the present paper, the following working model of the
process occurring in the chamber of an LRE is adopted.

A single-component fuel or a previously prepared liquid
fuel mixture and oxidizing agent are injected into the chamber
in the form of discrete drops that are ignited when contact
with hot combustion products is effected (Fig. 1a). Com-
bustion takes place only in the gaseous phase, since the
liquid’s boiling point is usually considerably lower than the
ignition temperature. Vapor jackets formed around the
drops absorb the heat of evaporation and superheating of the
vapors, retarding the vapor-forming process. The combus-
tion products and formed vapors accelerate, overtaking the
drops and blowing vapor tufts away from them (Fig. 1b).
Vapor combustion takes place according to laws of microtur-
bulent burning (3). At high temperatures, which prevail in
LRE chambers, the processes of microturbulent diffusion
and chemical oxidation usually occur at faster rates than the
liquid’s evaporation. Therefore, evaporation of a liquid fuel
appears to be, from our point of view, the limiting process,
through which overall burning rates, chamber parameters,
and chamber dimensions are determined. This fact also
comprises our first assumption.

The microturbulent combustion process proceeds very
rapidly. Therefore, we shall assume that the temperature
of combustion products is constant along the entire length of
the chamber. This constitutes our second assumption.

Prior to the beginning of noticeable liquid evaporation, the
chamber is filled with combustion products, the velocity of
which in the fuel supply zone is close to that of liquid out-
flow. According to the rise in the degree of evaporation,
new gases are intermixed, and the cross-sectional average
velocity of the gases increases, while the static pressure along
the chamber’s axis decreases slightly. In drops lagging be-
hind the combustion products, there arises a relative velocity
and aerodynamic force, striving to entrain the drops behind
the gases. Subsequently, the drops start to move rapidly,
and their acceleration gradually approaches that of the gases.
The presence of a relative velocity intensifies the heat and
mass transfer processes, increasing the rate of evaporation
and combustion of the drops. Therefore, the exchange
processes between drops and combustion products are char-
acterized by Nusselt numbers which considerably exceed
the value of 2. The smaller the initial Sauter mean diameter,
the less the acceleration of the drops differs from that of the
flow of the gasés; toward the end of the evaporation, the
accelerations become equal, and the relative velocity of the
drops falls to zero.

The parameters and dimensions of an LRE chamber can
be found by the numerical integration method of the motion
and evaporation equations of the drops, taking into considera-
tion, as Frank-Kamenetskyi (2) has shown, that, in the
combustion zone, the liquid’s surface temperature is close
to the boiling point (Fig. 2).

It is possible to set up a simple theory regarding the oper-
ating conditions in an LRE chamber, assuming that the
evaporation of liquid fuel from the beginning to end proceeds
sufficiently slowly so that the droplet acceleration is close
to that of the gases. This constitutes our last assumption.
In the initial stages of the process, this assumption leads to
overestimated rates of mass transfer. However, within a
short distance down the length of the chamber, this effect
practically disappears.
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droplets; vapor-flame .

Fig. 1 a) Design model of operating conditions in an LRE
b) vapor firing of drop tufts

Let us mention that the equality regarding the accelera-
tion of drops and gases is also postulated by authors who as-
sume that the burning drops in the cylindrical chamber are
stationary relative to the rapidly moving surrounding
gases. In reality, however, such a state is impossible, inas-
much as the cause that leads to the drops’ acceleration is
absent.

Evaporation and Combustion of Drops,
the Acceleration of Which Is Close to That
of the Flow

@G kg/sec of fuel are introduced into a chamber of an LRE
having a cross section S. The pressure of the gases in the
combustion chamber p, is determined by the gas flow, the
chamber temperature Ty, and the cross section of the nozzle
throat. The temperature of the combustion products 7T,
is determined by the nature of the reactants and by the fuel-
oxidizer ratio.

Let us assume that the temperature and pressure are con-
stant in the entire chamber:

Ty = const po = const

Density of the combustion products v, is found acecording
to the equation of state:

Yo = const

The cross-sectional average velocity of combustion prod-
ucts w is proportional to the amount evaporated, since it is
assumed that the formed vapors burn rapidly:

a

Relative evaporation capacity is defined as the ratio of the
formed vapors to the fuel mass, introduced simultaneously
into the combustion chamber:

2= — [2]

The initial velocity, of the combustion products can be
calculated through insertion of a certain initial evaporation
capacity z:

o 1y =
o = U = S %

Acceleration of combustion products in the cylindrical
chamber is determined by the evaporation rate dz/dt and the
flow of fuel:

j= == [3]
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Fig. 2 Parameters of an LRE chamber as a function of the
combustion zone length arrived at by numerical integration:
z2=0.05; C =1; 1 =100; AT = 2500°; A =3 X 105kcal/m-
sec-deg; » = 7 X 10 kgsec/m?; do = 50; a = 29; b = 0.54;

B =25; A = 0.0004 m?32/sec

Drops formed in the spraying of the liquid fuel are carried
away by the stream of combustion products. The accelera-
tion of gases is determined by the negative pressure gradient.
Acceleration of drops is caused by an aerodynamic force
that emerges because the velocity of the drops is lower than
the velocity of the surrounding combustion produets.

The acceleration of each drop jx is directly proportional to
the aerodynamic force and inversely proportional to the
mass:

f_, 8oy

k= —— =¢
J mg me 2

[4]
where u = w — v = relative speed of the drop.
The ratio of the cross-sectional area of the drop to its mass
isequal to
Sk 3/2

mk B vrdx

(5]

In studying motion and evaporation of a series of drops
that have dissimilar dimensions, formed during spraying,
it is reasonable to make use of an average Sauter diameter
d.,, instead of the true diameter of each drop.

Let us assume that, in the entire range of Reynolds num-
bers encountered in the motion of drops, the coefficient of re-
sistance is expressed by the Vyrubov formula (4):

Cx = a =
2] '\/E

The numerical coefficient ¢ depends on the degree of drop
deformation. For a sphere with Re =~ 100, a equals 11 (5).
For drops flattened under the action of aerodynamic forces,
@ equals 14 to 30.

a ‘/__977__ [6]

WYos Ax
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The relative velocity », with which the drops move under
the action of an aerodynamic force with an acceleration j, as
follows from Eqs. [4-6] is equal to

4\%3 3‘/‘71’2:[ i*
w = {_— d — 7
(3a> ® gnYog [ ]
Within a certain time after the beginning of combustion,

the acceleration of drops approximates that of combustion
products j. In this case, taking Eq. [3] into consideration,

we obtain
4\ 23 3 PTeE (dz 2
v = () s \/gmgﬂ s (%) ]
The Reynolds and Nusselt numbers for drops, the ac-

celeration of which approaches that of the flow of the gases,
can be found by.employing Vyrubov’s formula (4):

Re = uydx = (i)m dK23‘/ vr G dz\* (9]
gn 3a g8 dt

o 13 3
b\/Re = <§l> bdx ‘/ G dz [10]

928 dt

Nu

The empirical coefficient b, based on Vyrubov’s experi-
ments, is equal to 0.54.

The drops move in a stream of hot combustion products,
the average temperature of which is much higher than the
boiling temperature of the liquid. In this case, as Frank-
Kamenetskyi (2) has shown, the equilibrium temperature of
the surface of the drop is close to the boiling temperature
of the liquid, and the evaporation rate is expressed by e
logarithmic formula

NuX Toe — Thonr
R e I
Inserting the designation
To — T 01
B = Cp—g_l’Ll [12]

The velocity responsible for the radius diminution of the drops
dr q NuX

dt _'—y—TchdKVT

In(1 4+ B) [13]

is"directly proportional to the Nusselt number and inversely
proportional to its diameter.

Substituting [10 and 12] in [11], we find that the flow of
evaporated substances from the surface of the drops, the ac-
celeration of which approaches that of the gases’ flow, does
not depend on _the drop diameter

3 3
4 A G dz o
= =~ In(l + B) 4/ Y77 *2
g b“Sa Cp ( )‘/_(]27)23 dt [14]

Temperature_elevation and acceleration of gases causes the
flow of evaporated substances to rise.

The rate of evaporation dz/dt is equal to
dz dzdr
4= 5]

Substituting Eqs. [2, 13, and 14] in [15], after transforming
we obtain

dz A
Py A ) [16]
Here the following designation is inserted:
3
- ‘/ g [5 In(1 + B):I
A= \/ 2 (6b) 2 m¥2/sec  [17]
3a oYy
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Fig. 3 Dimensionless parameters of an LRE combustion
chamber operating on a single-component liquid fuel: z = 0.05;
D =103

The rate parameter 4, which relates to evaporation and
combustion, depends on the physical properties of the fuel
and the combustion products. A has an order of magni-
tude of several ten thousandths m%%/sec. So, with G/S =
500 kg/sec-m?, AT = 2500°, ¢ = 1 keal/kg-deg, \ = 3 X
107* keal/sec-m-deg, n = 7 X 107 kg-sec/m?, ¢ = 29,
b= 0.54, yr = 1000 kg/m?:

4
‘/— (6-0.54)° — :
JU EE ‘/500 [3 10 5ln<1 + 12500>]d=

© 9.8-7-1075-1000 1 100
0.0004 m3/2/sec

Substituting the evaporation rate value found in [3], we
derive the acceleration of the hot gases:

4G

J= d.,¥2So

(1 -2 (18]

Separating the variables in Eq. [16] and integrating within
the limits from ¢ = 0 to ¢ and from 2, to #, we can find the time
as a function of combustion completeness:

A 1z
A 1nl—z

(19]

The evaporation and combustion times of a series of liquid
fuel drops is directly proportional to the average Sauter d.
spraying diameter to the power of 2 and inversely propor-
tional to the evaporation parameter A (Fig. 3).

Substituting the found evaporation and combustion rate
values in [8], we find that the relative velocity of the drops
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Fig. 4 Chamber parameters of an LRE as a function of com-

bustion time of a single-component liquid fuel: G/S = 500

kg/sec-m; d,, = 50; 2z, = 0.05; ¢ = 1 kcal/kg-deg; N = 3

X 1073 keal/sec-m-deg; 4 = 7 X 107 kg-sec/m?; a = 29;

b = 0.54; [ = 100 kcal/kg; AT = 2500°; v, = 1000 kg/m?;
P = 22kg/cm?

in an LRE chamber does not depend on the initial Sauter
d.» diameter, but it decreases rapidly with the increase of the
relative evaporation capacity 2:

86 N Gln(1+ B)
= —— ———
a ¢ gnSvo

With A = 8 X 1075 keal/sec-m-~deg, ¢ = 1 keal/kg-deg, G/S
= 500 kg/sec-m?, B = 25, n = 7 X 107% kg/sec-m? a =
29,5 = 0.54, vo = 2.5 kg/m?:

u = 42(1 — )

(1 — 2)¥3m/sec [20]

With temperature and pressure decrease of the combustion
products T and p, respectively, the limiting relative velocity
of the drops diminishes.

The velocity of combustion products is expressed by Eq.
[1]. The velocity of the drops is equal to the geometrical
difference

T=w—14u
y = G [,_8Ahd+B (1 _z)2/3:] [21]
Svo a c g

The path traversed by the drops during the evaporation and
combustion times, that is, the calculated length of the cham-
ber’s cylindrical section, is expressed by the definite integral

x=fzvdt
20

Using Eqs. [16] and [21] we get

Gd2 s | 2 8b A In(l + B) p
x_—ASw fza 1—2 ac yn\cyl—z @
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Hence
Gd. 32 1 —2 b NIn(l + B)
N i ] - S Rt el
‘ AS%{nl—z %+ 2 lzac an X

[(l — z0)2/3 — (l — 2)2/3]} [22]

The combustion zone length of the sprayed single-com-
ponent liquid fuel is directly proportional to the maximum
velocity of combustion products G/S7y, to the average
Sauter spraying diameter to the power of 4, whereas it is in-
versely proportional to the rate evaporation parameter A and
depends on the value of the relative amount evaporated z.
The first polynomial in figured brackets expresses the path
traversed by combustion products; the second polynomial
characterizes the lagging drops, stipulated by the existence
of the relative velocity u.

With ¢ = 29,6 = 0.54, B = 25, ¢ = 1 keal/kg-deg, \ =
3 X 1075 keal/sec-m-deg, = 7 X 107 kg-sec/m2:

2 A+ B)
ac g

If G/S = 500 kg/sec-m? py = 22, d, = 50, T} =
2500°K, R = 30 m/deg, and the completeness of combustion
given as z = 0.98, then, according to Fig. 3, the expression in
the figured brackets of Eq. [22] is equal to 2.5, v = 3 kg/m3,
and A = 0.0004 m¥2/sec. Then the calculated evaporation
and combustion length is equal to

D = 0.3

Gd.32  2.5-500(50-10-5)3/2
z =25 = =

2 ASye 0.0007-3 3 m

which corresponds to the combustion chamber length of real
LRE (7).

It is clear that combustion chambers for two-component
fuels should be of greater length than those of single com-
ponent ones, since the evaporation and combustion processes
in the latter case are accompanied by turbulent mixing proc-
esses.

With an elevation in the fuel injection rate, the dimensions
of the sprayers usually increase. In addition to that, the
sprayer deteriorates, and the necessary chamber length in-
creases. Thus the chamber length of the V-2 engine was
of the order of 0.4 m, whereas that of the LRE Rocketdyne
F-1, having a rated traction of 680 tons, was of the order of
about 0.8 m (8).

1t is noteworthy that the stated method gives results which
are close to reality only with sufficiently high evaporating
capacities: 2z > 0.2, when a relative velocity u, close to the
calculated one, is successfully attained. The primary param-
eters of the combustion chamber can be found by numerically
solving the drops’ motion and evaporation equations.

Conclusions

An evaporation and combustion theory of a single-com-
ponent liquid fuel in an LRE chamber is developed which
indicates the following.

1) With a decrease of the drops’ average Sauter diameter,
the combustion-zone length of a single-component or
of a premixed fuel in LRE chamber decreases. If
the spray is very fine, the evaporation rate will become
greater than the mass velocity due to microdiffusional turbu-
lent combustion, and the forementioned theory will cease to
approach reality.

2) By raising the temperature increment of gases during
combustion, that is, by increasing the fuel’s heat of reaction,
the evaporation and combustion rates rise according to the
logarithmic law, whereas the combustion time and necessary
chamber length decrease.
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3) With an increase of the liquid-fuel mass flow and heat
conductivity of gases, the evaporation and combustion rates
rise, but with an increase of gases’ heat capacity, viscosity,
and the fuel density, the evaporation and combustion rates
decrease.

4) The calculated zone length for the evaporation and
combustion of drops of a single-component or a previously
intermixed liquid fuel is close to the length of an LRE cham-
ber, as determined by an empirical method.

—Submitted February 2, 1960
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Reviewer’s Comment

To the best of the reviewer’s knowledge, this is the first
published Russian analysis of a detailed model of the com-
bustion process in a liquid propellant rocket motor. A
steady-state, one-dimensional model involving two-phase
flow (liquid droplets and gaseous reaction products) is con-
sidered. The distribution in droplet sizes is neglected, and
vaporization is assumed to be the rate-controlling process.

The author’s study apparently was inspired by the work
of Sodha (Ref. 1 of the paper); II’yashenko appears to be
unaware of the more significant publications in English
(1-6) which began with the classical analysis of Probert (1)
in 1946 and included a wealth of NASA research (5). The
author’s model resembles that of Spalding (3), but his treat-
ment retains the Lagrangian aspects of Sodha’s analysis in-
stead of the simpler and more transparent Eulerian approach
of Spalding.

" The author’s approximations appear to be less realistic
than those of Spalding. The treatment of gas and droplet
accelerations is particularly questionable and does not seem
to pay proper respect to Newton’s second law. It is curious
how, while explicitly assuming that the acceleration of the
droplets is equal and not opposite to that of the gas, the au-
thor finds that the relative velocity of the gas and the drop-
lets decreases as they travel downstream. Nevertheless,
the author obtains the usual results, which are virtually
unavoidable in one-dimensional analyses (7): the required
length of the combustion chamber increases as the injection
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velocity and droplet diameter increase and decreases as the
evaporation rate increases.

It is worth mentioning that the correlation between drag co-
efficient and Reynolds number used by the author (Eq. [6])
was obtained from early Russian work (Ref. 4 of the paper)
and appears to be less accurate than the correlations cur-
rently in use (6) in this country. Another interesting ob-
servation is that the only data quoted by the author in his
experimental comparison is for the German V-2 and the
Rocketdyne F-1.

Since the author’s analysis is second-rate by Western
standards, we may conclude that either 1) other, more real-
istic analyses exist in Russia or 2) sucecessful rocket motor
design does not require analyses of this kind.

—TFoRMAN A. WILLIAMS
School of Applied Science
Harvard University
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Equations of the Precessional Theory of Gyroscopes

L. I. KuznETSoV

ULER’S equation for gyroscopic motion, obtained by
..using the theorem of moments, is as follows

Alp — ¢') + Hq = M,

Alg+pr") — Hp = M, []
H = Mz

where 2 is the gyroscope axis, z and y are the axes in the equa-
torial plane of the inertia ellipsoid, constructed for the sus-
pension point; A is the gyroscope’s equatorial moment of

Translated from Uchenye Zapiski (Leningradskogo Universi-

teta, Seriia Matematicheskikh Nauk (Scientific Notes of Lenin-

grad University, Mathematical Science Series), 35, no. 280,
25 30 (1960). Translated by Primary Sources;-New York.

inertia; H is the angular momentum of the gyroscope; p and
g are the projections of the gyroscope’s angular velocity on the
z and y axes; r’ is the projection of the angular velocity for
trihedron x, y, z upon the z axis; M., M,, and M, are the
moments of forces about the axes of the moving trihedron.
In the precessional (or elementary) theory, it is assumed
that, the magnitude of the gyroscope’s kinetic. moment is ap-
proximately' equal to H and is directed,along the axis of the
gyroscope. Then, the following equation is obtained:

H =M. —Hp=M, H=M, 2]

Let a%es £ n, and ¢ be approximated graphically. The
position of the gyroscope’s axes in this system of coordmatﬁs
will be @leﬁ,ned by angles o and 8 as indicated in Fig. 1.



